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A B S T R A C T

We numerically simulate the effect of shear flow on the evolution of NIHD waves in

the solar corona which is modeled by a low-~,  resistive plasma slab. The hydromagnetic

waves are generated in the coronal loop by applying a periodic driver which mimics foot

point motion in the photosphere. We detect some signatures of the kink instability and

traces of logarithmic singularities at early stage of the evolution. Further temporal evolu-

tion completely removes the singularities. We infer that the flow inhibits the development

of kink instability. We find that the presence of flow facilitates heating. The inclusion of

a small non-zero Vv ( Vv being the component of flow along the height of the loop) has

tremendous effect on resonance absorption, as large changes occur in vortex structures.

The center of the simulation loop consists of elongated plasma vortices, which suggests

that it may break down on further evolution, The microstructure are the possible sig-

natures of the direct cascade of energy. The direct correlation between vortex formation

and the heating pattern is explained. The flow brings more or less symmetric distribution

of heating.
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1 Introduction

It is believed that most of the astrophysical objects (e.g., stars, accretion disks etc.)

possess a hot corona. The corona is a stretched magnetic tube filled with a low density

ionized gas. It has closed as well as open field topologies. It can support a variety of

waves generated by convective upwelling motion in the photosphere. The corona acts as

a site of wave emission as well, for example, radio, microwave, and x-ray emissions are

all emanated from the sun. In order to explain the observed coronal temperature profile,

resonant absorption of MHD waves by coronal plasma has been proposed as a possible

candidate [( Ionson, 1978). The simple physical picture is that the footpoint motion in

the photosphere constantly stirs the coronal plasma leading to the MHD wave generation

which is then resonantly absorbed resulting in the enhanced heating of the corona. A

general disturbance in the photosphere can produce Alfven, fast and slow

waves as well as the formation of current sheets (Priest, 1981; Karpen

For sufficiently slow photospheric motions (TA = L / VA < T, where TA

magnetosonic

et al., 1991).

is the Alfw.%

time scale, L is the size of the system, VA is the typical Alfv6n  velocity and T is the

characteristic time of the photospheric motions), current sheets may play an important

role in the coronal heating. A current sheet is formed by the photosheric disturbances

which may bring the topologically  seperate parts of the magnetic configuration adjacent

to each other. During the disruption of a current sheet, magnetic energy is released via

reconnection. The temporal and spatial scale of the footpoint motion is comparable to

that of the granules (Choudhuri  et al, 1993a, 1993b). The new magnetic flux emerging

from below the photosphere interacts with the plasma and the fields already existing at

the sun. The convective motion slowly deforms the magnetic field lines which finally give

rise to different topological features like loops and arcades. These morphological features

can persist for days, except for occasional fast deformation in some rapid events like solar

flares, etc.

Prior studies of the resonance absorption of MHD waves in an inhomogeneous plasma
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in the context of solar coronal heating has been carried out by several authors (Poedts et

al, 1989; Hollweg  1981, 1990; Goossens, 1991; Goossens et al 1995; Cadez and Ballester,

1994; Erdelyi and Goossens, 1994; Parhi et al, 1996a, 1996b, 1996c and references therein).

It is known that Alfv6n  waves possess a continuous spectrum and therefore, can play a

dominant role in the heating of the coronal plasma. In an inhomogeneous plasma, a

nonlinear Alfv6n  wave can decay into a magnetosonic wave which is easily dissipated in

the corona. However, the full nonlinear problem can only be studied numerically. Such

a study has recently been undertaken (Parhi et al., 1996a, 1996 b). These studies were

confined to a case where the background plasma had no bulk shear flow. A realistic model

should deal with the presence of an equilibrium flow. The present work assumes such a

non-zero bulk shear flow in the solar plasma and investigate its effect on the evolution of

the waves and the heating of the corona. The analytical studies of the effect of velocity

shear on resonance heating have been carried out by Hollweg  et al (1990) and Yang and

Hollweg  (1991). They found that depending upon the values of velocity shear, absorption

of waves may be enhanced or reduced. Hollweg et al (1990) concluded that the presence of

the shear flow is, in general, important for the resonance heating of the corona. However,

their conclusion is valid only for an incompressible fluid. Here we relax the assumption

of incompressibility, and treat the solar atmosphere as compressible, which is a more

realist ic case. We find that the remnant of the fast wave singularity which is present in

the absence of an equilibrium flow (Parhi et al, 1996a, 1996b), disappears in the presence

of flow. This implies enhanced conversion of wave energy into thermal ener~ and thus

an increased coronal temperature. This is in agreement with the conclusions of Hollweg

et al (1990) and Yang and Hollweg  (1991).

The plan of the paper is as follows. In section II we discuss the basic equations. In

section III we describe our simulation model. The section IV discusses the simulation

results. The results are summarized in section V.



2 Governing equations and basic profiles

The coronal plasma in cartesian  geometry obeys the following compressible, time-dependent,

resistive equations:

ap
~+v”(pv)=o, (1)

a(pv)
~+v” [( Pv)v] = –vP+ ;(V x B) X B, (2)

~B
z

=Vx(Vx B)– Vx(qVx B), (3)

f9e
~+ V”(eV)= –pV” V+~(Vx B)2, (4)

V. B=O. (5)

Here p is the gas density, V is the velocity, p is the magnetic permeability, p is the

gas pressure, B is the magnetic field, e = p/(v – 1) is the internal energy per unit volume,

q is the magnetic diffusivity  and y, the ratio of specific heats, is 5/3.

We consider a simple coronal loop modelled by a slab . The  y direction  is along

the height of the loop, the z direction corresponds to the azimuthal direction and the

inhomogeneity occurs in the x direction, corresponding to the direction of the width of

the loop. We assume that the derivative of all the quantities with respect to z, i.e., d/~z,

vanishes but Vz and l?=, the z components of perturbed flow and magnetic field, are

nonzero. Consequently, both Alfv6n  and cusp singularities are present in such a plasma

which have been recently studied by Murawski and Goossens (1994a ) and Parhi and

Lakhina (1994). The equilibrium density po(z) and the magnetic field BOV(Z)  along the y

direction are as follows:

{

Ix]<a,
po(x)  = ‘i’

Pe + (pi/pe – l)pe/cosh14(l x ] –a), [ x 1> a,
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{

Bi , lxl~a,
Boy(x) =

B.+ (Bz/B. – l) B,/cosh14(l  z [ –a), I x 1> a,

where the indices i and e denote the quantities inside and external to the slab, respectively.

P O(x) is a smeared top-hat profile. Note that the smearing starts just at the slab edges

x = &a where a is normalized by the typical coronal loop radius (or half-width in our

case) L w 103 km at the photosphere. The magnetic field Boz (x) along the z direction is

taken as follows:

Boz(x) = exe-”, (6)

where c is an amplitude factor to be chosen. The plasma undergoes twist due to this

magnetic field. The expression for the equilibrium gas pressure in the external region

PO, (x) is derived from the equilibrium condition p. + B~/2y = const. In the region inside

the slab, we consider B. N 0.1 T, To N 104 K, and no w 1021 m-3 which gives a plasma

@ of 0.04. We consider pi/p.=5 and for zero twist the ratio of Alfv6n  speeds Va./Va~=3.

Hence the ratio B~/B~ = 1.8. In the transition region (where the gradient is sharp) which

spans over one or two cells horizontally this ratio changes slightly. Nonzero values of Boz

cause the appearance of additional local extrema in the Alfv6n speed. These extrema

become much pronounced for larger twist. As a result of these extrema wave trapping is

also possible at the slab edges and, consequently, fine structures can occur.

3 Simulation model

The numerical simulations were performed with a 2.5 dimensional resistive hlHD code.

The code uses the well-known flux-corrected transport ( FCT for brevity) technique (De-

Vore, 1991, 1994; Murawski and Goossens, 1994b; Murawski et al 1996). The details

about the code are given in Parhi et al., 1996.
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The computational box (–5a, 5a) x ( –8a, 8a) consists of 100 cells in both horizontal

x and vertical y directions. This roughly corresponds to 104 km horizontally and 16 x 103

km vertically. We consider free-slip, rigid wall boundary conditions at the top and bottom

of the simulation regions (~ = +8a): Vu = O and 8f/6’y = O for ~ = p,p, B, Vz, and Vz.

This appears to be a reasonable constraint because the motions in the solar corona cannot

much effect the high density photosphere. At the remaining (x) boundaries we applied

open (zero gradient) conditions for all of the variables.

We study the effect of photospheric footpoint motions. Thus, at the bottom of the

simulation region we impose a body force F’. as follows:

Fz(z,  y = -8a, t) = Fd(Z)SZn(L@),

{

Fd, lx]~a,
Fd(x) =

Fd/cosh14(l z I –a), I x 1> a.

Here, the constant Fd is the amplitude of the driver and ~d is the driving frequency.

4 Results

We analyze in this paper the effect of equilibrium sheared flow on the resonance heating of

the coronal loop by the plasma waves. The two-dimensional equilibrium flow components

V. and Vu are proportional to BOY(Z) and the proportionality constant V is assumed to

be 0.1 for Vv and 0.01 for V=. Thus ~. = O. OIV., and vu = O.lV~,  where v~~ is the

Alfv4n  velocity at the edge of the slab. First we study the effect of vertical non-zero

flow (i.e.Vv # O), and subsequently a small horizontal ( i.e., V=) component of the flow is

introduced. We collect from previous simulation results (Parhi et al., 1996) that for zero

or small twist (c < 0.03V~~  w) waves are excited preferably as sausage modes. The

contour plot of V= at t = 300L/V.~ indicate that the waves develop kink instability in the

upper part of the loop (not shown). Figure 1 describes a situation where ~z = 0.0 and
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VV = O.IV.. at time t = 177L/V... We see some signature of kink instability and traces of

logarithmic singularities. For a right kind of frequency of the driver it is known that the

magnetosonic waves exhibit logarithmic singularity. However, we note that this feature is

not very prominent compared with that at earlier time ( Parhi et al., 1996) because due to

finite resistivity the singularity smoothens after t > t. where t. w q ‘1/3. Further temporal

evolution (till t = 300L/V~~  ) completely removes the singularity. Thus we infer that the

flow inhibits the development of kink instability. Further, the surface plot corresponding

to the contour plot for t = 300L/Va. did not show any trace of singularity implying

the flow is uniformly heating the plasma. As mentioned earlier, Hollweg  et al. (1990)

have concluded that under certain conditions flow facilitates heating. Perhaps, we are

observing the same effect here numerically.

In the absence of equilibrium flow, the velocity profiles for slow mode waves ( N1u-

rawski et al., 1996 and references therein) do not remain symmetric in x when twist

c = 0,6V~~ @ is included. This was also noticed by Parhi et al. (1996). The vortex-like

structures initially formed at the bottom of the coronal loop appeared to diffuse to the top

of the loop. The above transition from organised structures to disorganized ones could be

related to the ongoing convective processes at the photosphere. The inclusion of a slight

y-component of velocity, VV = O. lV.. ( Figure 2 taken at t = 177L/V& ), hm tremendous

effect on the evolution of waves. From Figure 2 we notice that the flow has a tendency to

diverge towards the end of the loop. The rigid wall boundary conditions prevents the flow

to penetrate into the top boundary and hence the plasma tends to spread near the top.

The steep profiles for density and magnetic field orients the flow in such a manner that it

concentrates on the specific layers. As time evolves (i.e., at t = 300L/Vae ) the spreading

of plasma near the top boundary ceases (not shown). Rather the two concentrated layers

get separated in the middle of the loop and subsequently get closer near the top boundary

. Some vortex like stuctures reappear at the footpoints.

When a small non-zero x-component of velocity, V= = O. OIVa,. is included in addition
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to VV = O. IV.., the velocity profiles undergo drastic changes. It helps to smooth out the

existing gradients which can even be located in the velocity structures extending to the far

left. The center of the loop appears to consist of elongated plasma vortices (not shown).

which suggest that it may ultimately break down with further evolution. From this, we

conclude that the presence of equilibrium flow facilitates the stretching of vortices.

Now we will discuss V3 = (Bov~ 2 112 N V: which is roughly– BozVJ/(B&/ + ‘Oz)

associated with Alfv6n  waves ( Erd61yi and Goossens, 1994). The plots of V3 at t =

300 L/V.. in the absence of equilibrium flow (not shown) indicate the formation of dense

elongated Alfv6n vortices near the top left edge of the boundary surrounded partially by

rarefied smooth plasma zones . When small non-zero y-component of the equilibrium flow

is present (Figure 3), we see at t = 177L/V& the formation of dense elongated vortices

at various heights of the loop. The whole contour picture can be considered consisting of

two large half open vortices engulfing many closed ones indicating the localised deposition

of wave energy. The microstructure are the possible signature of the direct cascade of

energy from large to small scale length. As time evolves a snap shot at t = 300L/Vae

(not shown) indicates no vortex implying that the flow has uniformly heated the plasma.

When small non-zero x-component of velocity is introduced some of the vortices reappear

in the middle of the slab with the larger concentrated ones forming canal like features

(not shown). Thus introduction of a small x-component of velocity preferentially builds

up the storage of wave energy in the center of the simulation box. The imposed boundary

conditions apparantely play a great role in the development of velocity structures.

The Ohmic heating (qj2) profile at t = 300L/V=,  for the case of no equilibrium shear

flow show a sharp peak at the left edge. This could be due to resonance heating of Alfw%

waves. Also if one compares these profiles with plots of V3, then the correlation between

vortex formation and heating patterns becomes apparent. When a small shear flow in

y-direction is included (Figure 4) the pattern of heating completely changes. The flow

brings in more or less symmetric distribution of heating. It is natural to think that the
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flow changes thecondition of resonance. Comparing Figure 3withthe  heating contours

(Figure 4), the relation between the vortex structures and Ohming heating becomes clear.

When the plasma evolves for longer time the heating becomes uniform. When little x-

componentof velocity is included the heating pattern becomes symmetric confirming the

vortex picture (not shown) where large canals of plasma were observed. Two clear layers

of concentrated heating are visible. The width of these layers is larger in comparison

with that of the resonance layer when there is no flow or only flow in y-direction (Figure

4). Thus x-component of velocity enhances the occurrence of resonance which in turn

promotes more heating, This could probably explain the heating of the solar corona in

general because in reality Vz and Vv should be present.

5 Conclusion

In our simulations the periodic driver, which mimics the foot point motions in the ph~

tosphere, leads to the generation of MHD waves in the coronal loops. The signature of

kink instability and traces of logarithmic singularities disappear as time progresses sug-

gesting that the flow inhibits the kink mode. The flow has a dramatic effect on resonance

heating as manifested by large changes in vortex structures. The flow brings more or less

symmetric distribution of heating. The center of the coronal loop consists of elongated

Tplasma vortices suggesting that the further evolu  on may lead to its break-down. The

resultant microstructure are the possible signature of the self organisation

direct cascade of ener~ from large to small scale lengths. There exists

between vortex formation and heating pattern.

implying the

a correlation
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Figure Captions

Fig. 1: Spatial variation of V. at t = 177 L/V.. in the presence of equilibrium VV = O. lv~~.

Fig. 2: Spatial variation of Vv (corresponding to slow waves) at t = 177 L/V.. in the

presence of equilibrium VV = O. lV&.

Fig. 3: Spatial variation of V3 (corresponding to Alfv6n waves) at t = 177 L/V.. in the

presence of equilibrium vu = O. lVae.

Fig. 4: Spatial variation of J2 (corresponding to Ohmic heating) at t = 177 L/V.. in the

presence of equilibrium ~’ = O. lV...
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